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A nonl inear stress-strain relation (NLSM) for the turbulence stresses is applied to 
axisymmetr ic free shear f lows wi th and w i thout  swirl. This relation is an expl ici t  
solut ion to an algebraic Reynolds stress model (ARSM). The stress relation is a finite 
sum of tensor groups depict ing various interactions between the mean strain and 
vort ic i ty fields. Implementat ion is in the context of a k -  e type model. Comparisons 
are made between f low field predictions obtained wi th the ful l Reynolds stress 
model, the NLSM corresponding to improved and standard ARSMs, the k -  e model 
and experimental data. 
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Introduction 

The idea of formulating the algebraic Reynolds stress model 
(ARSM) from the Reynolds stress transport equations originated 
with Launder (1971) and Rodi (1972). These formulations consist 
of approximating the convection and diffusion terms in some 
fashion so that the modeled differential equations for the Reynolds 
stress tensor becomes algebraic. Rodi (1976) postulated that the 
convection minus diffusion terms in the dynamic equation for the 
Reynolds stress be proportioned to the convection minus diffu- 
sion terms in the turbulent kinetic energy equation. The resulting 
expression for the ARSM is ~ / k ) ( P -  e)= Pij + ~i]-  ~-ij. 
The Reynolds stresses can then be obtained for some model of 
the pressure strain ~ q  and the dissipation tensor approximated 
by eli = 2e~q/3,  for large turbulence Reynolds numbers. This is 
the basic formulation for most ARSMs in use today. 

The ARSM has been applied to a wide variety of near parallel 
flow situations and has been successful in accounting for the 
effects of longitudinal surface curvature, rotation, buoyancy, etc. 
The k - e  model has been employed successfully to strong 
swirling flows (see, for example, Leschziner and Rodi (1984) and 
Naji (1986)), but only with the use of ad hoc swirl-dependent 
modifications. Kim and Chung (1988) concluded that the ARSM 
was more capable of predicting the strong swirling jet with 
recirculation than the k - e  model. The ARSM has inherent 
deficiencies. Fu et al. (1988), utilizing the ARSM and the full 
Reynolds stress model (RSM) in the axisymmetric jet with and 
without swirl, attributed errors in predictions with the ARSM to 
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the approximations of the convective and diffusive processes in 
its formulation. 

It is generally thought that the ARSM is valid for near 
equilibrium flows where convection and diffusion assume a 
certain balance. Taulbee (1992) showed that the standard ARSM 
is valid only in the asymptotic limit where the anisotropic stress 
tensor becomes constant. This requires a large value of a time- 
scales parameter 'to- defined as the ratio of the time scale of the 
turbulence 'r = k/~ to that of the mean flow strain field 1/tr  
where tr = (SktStk) 1/2. Taulbee (1992) formulated an improved 
ARSM that approximately represents the particular solution of 
the modeled Reynolds stress equation (with transport neglected) 
over the complete range of the time-scales parameter. Hence, the 
improved ARSM will more closely duplicate the behavior of the 
differential Reynolds stress equation. 

When the ARSM is employed in general two- or three-dimen- 
sional (2-D or 3-D) flows a system of algebraic equations needs 
to be solved for the stresses. Usually the solution to the equation 
set is carried out numerically at each time step or iteration in the 
overall numerical procedure. Because there is no diffusion or 
damping in the equation set, it is very difficult to maintain a 
stable numerical solution. Hence, it is desirable to employ an 
explicit stress-velocity field relation, and thus provide stability to 
the numerical procedure. Taulbee et al. (1994) formulated a 
nonlinear stress-strain relation (NLSM) for 3-D flows that is an 
explicit closed-form solution to the ARSM equation set. The 
NLSM contains a finite sum of tensor groups involving the mean 
strain and vorticity fields. 

In this paper, we examine predicted results for axisymmetric 
shear flows utilizing the RSM, the k - e model, and the NLSM 
for the standard and improved ARSMs. Also, for the axisymmet- 
ric swirling jet, results are obtained using the improved 
ARSM/NLSM with convective terms from a curvilinear coordi- 
nate system. Results with the improved ARSM/NLSM com- 
pared favorably to results with the full RSM. 
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Model formulation 

From the modeled transport equations for the Reynolds stress, 
Taulbee (1992) derived the ARSM in the form 

a = - - ~ S - C 3 [ a S + S a - ~ { a S } I  ] + C 4 ( a l ~ - D a  ) (1) 

where a is the matrix of the anisotropic stress components, aij 
= u iu f f k  - 2~ij /3; S is the matrix of the nondimensional mean 
flow strain components, Si*, = g'r(~Ui/~x j + bUJOxi)/2; 1"1 is 

• J . 

the matrix of the nondlmens~onal mean flow rotation compo- 
nents, 12i* j = g'r(OUi/Ox j - OUffOxi)/2; "r = k / e  is the time scale 
of the turbulence; I is the identity matrix; and {aS} is the trace of 
aS. The variable g in the definitions of S and f l  is given by: 

- 1  

for the standard ARSM as given by Rodi (1976), and 

[ "]-' 
g =  C , + C ~ - 2 + ( 2 - C , , ) 7  (3) 

for the improved ARSM as given by Taulbee (1992). This 
formulation is designed to match the behavior of the RSM at 
small turbulence time scales as well as at large values that 
correspond to the standard ARSM. The parameters C 3 and C a 
appear in the rapid part of the pressure-strain correlation 

dpq = - C l ~ a  q + CokS q + (1 - C3) 

X k (  a i lS l j  -I- aj lSl i  - 2 almSml~i j  ) 

- (1 - C4)k ( ail~'~lj -I- alzf~,i ) (4)  

which is linear in aij. The pressure-strain correlation defined by 
Equation 4 is equivalent to that given by Launder et al. (1975) 
and the parameters C o, C3, and C a can be written in terms of a 
single parameter C 2. Taulbee et al. (1994) analyzed homoge- 
neous shear flow experiments and give C 2 = 0.52, which results 
in the values C O = 0.8, C 3 = 0.029, and C 4 = 0.422• The parame- 
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ter C 1 appears in the slow part of Equation 4, and C~ and C~ 
appear in the modeled equation for the dissipation. For t~his work 2, 
we use values of C 1 = 1.8, C, = 1.44, and C~ = 1.92. 

Ekander and Johansson (19~9), . . 2 examining curved and rotating 
channel flows, concluded that the extra convection terms result- 
ing from a transformation to a curvilinear coordinate system are 
redistributive and should be included in the formulation of the 
ARSM. These convection terms arising from coordinate curva- 
ture can be included in the ARSM by defining the matrix of the 
mean flow rotation tensor as follows: 

U m 
(5) 

for use in Equation 1. In this equation the curly-bracket term is 
the Christoffel symbol of the second kind. As seen later, this 
formulation is essential for obtaining the proper behavior for 
certain stress components. 

A nonlinear stress-strain relation (NLSM) for 3-D flows was 
obtained by Taulbee et al. (1994) via a closed-form solution of 
the linear algebraic equation set given by Equation 1. The 
resulting solution has the following form: 

1 0  

a = ~ G(")T (") (6) 
n = l  

where the T ~") are independent symmetric traceless tensor groups 
in S and l l :  

T °) = S 

T (2) = S ~  -- ~ S  
TO ) = S 2 i 

- 3111 

T(4) = ~Q2 _ ½12i 

T(5) = ~ S  2 -- $ 2 ~  

T (6) = ,.~2 S + S~), 2 _ 3141 

T (7) = ~).,S~ 2 - ~2S~ ~ 

T(8) = S ~ S  2 - $ 2 ~ S  

T (9) = ~),2S2 + S2~.Q 2 - 215I 

T 00) = ~52~)_. 2 - ~')2S2 Q (7) 

where I 1 ={$2},  12={~'~2}, 13={$3}, 1 4 = { 8 ~  2} and 15--- 

Notation 

ai j  
C1 
C2 
C3 
C4 
C. 

C~ 
C~ 
I 
k 

P 
Pij 

S 

Sq 

anisotropic stress tensor, u i u j / k -  2 ~ q / 3  

linear return-to-isotropy coefficient 
linear rapid coefficient 
linear rapid coefficient, (5 - 9C2) /11  
linear rapid coefficient, (1 + 7C2) /11  
dissipation transport coefficient 
dissipation equation coefficients 
eddy-viscosity constant in k - ~ model 
stress transport coefficient 
indentity matrix 
turbulent kinetic energy, u i u J 2  
pressure 
production rate of turbulent kinetic energy, P . / 2  
generation rate of Reynolds stress tensor, 

-- (bl iupUj/ /~X l "1- UjUl~Ui//~Xl) 

matrix of the nondimensional mean flow strain 
components, Si*, = grSq  

J 
mean flow strata tensor, (OUi/Ox j + ~Uj/Oxi)/2 

T~jt 
Ui, bl i 
Ui,Uj 

U,u 
V, v 

W,  w 

Greek 

E 

~ij  
~t 
T 
l l  

transport of Reynolds stress, Cs(k//E)UiUmOUiUj//()Xm 
x i component of the mean and fluctuating velocities 
Reynolds stress tensor 

mean and fluctuating velocities in (axial) x-direction 
mean and fluctuating velocities in (radial) r-direc- 
tion 
mean and fluctuating velocities in (angular) 0-direc- 
tion 

linear rapid coefficient, 4(15C 2 - 1) /55 
Kroneker delta 
dissipation rate of k 
dissipation rate tensor, 2~5if f3  
turbulence viscosity coefficient 
turbulence time-scale, k /~  
matrix of the nondimensional mean flow vorticity 
components, l~Tj = g'r~'~ij 
mean flow vorticity tensor, (OUi/Ox j - OUj/~xi)/2 
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{52~ 2} are independent invariants and {} denotes the trace; i.e., 
{S 2} = S**tSI* k. The 6 (~) take the form 

8 
6 ('n (2 - 7C212) 

15D 
64 

+ C31-~'~C2414(1 - 7C212 + C4I 2) 

16 
6(2> _ _  C4(1 - 2C4212) 

15D 
32 

+ C31-~C314(5 - C4212)(1 - 2C4212) 

32 
G (3) = C31- ~ (1 -- 2C212) 

6 (4)=  -~Df414-C3~-~6DC2[Ii--~C2(7-2C212)14] 

16 
G(5) = -- C 3 5-O C4 

16 32 
G (6) = -- -.~C24 + C3-~-~C4414(7 -- 2C212) 

16 32 
6 (7> = -~-BC2 - G - ~ C 2 ~ ( 7  - 2C~I~) 

G (s) = 0 
32 

G (9) = C 3 " ~  C 2 

G ('°) = 0 (8) 
where D = ( 1 -  2C2Iz)(2- C212). Equation 6, with T (n) and 
G (") given by Equations 7 and 8, represents an explicit relation 
for the anisotropic Reynolds stress tensor in terms of the mean 
flow velocity field. It should be pointed out that this solution to 
Equation 1 requires that the model parameter C 3 be relatively 
small (see Taulbee et al. 1994), C 3 = 0.029 in this work. The 
stresses given by Equation 6 are utilized in a k - • type model. 

Application to axisymmetric flows 

Flow field predictions were obtained for axisymmetric free shear 
flows with and without swirl. If the normal strains 
(OU/Ox, aV/Or, V/r )  are retained for the axisymmetric jet with- 
out swirl, a 3-D stress relation should be used. If the normal 
strains are neglected, leaving only the shear strain S,r = 
(OU/ar)/2, then the 2-D stress relation given in Taulbee (1992) 
can be used. A 3-D stress relation must be used in calculations of 
the axisymmetric swirling jet, because at a minimum the Sxr and 
So, = (OW/Or - W/r)~2 components must be retained. The nor- 
real strains are consistently retained here, Launder and Morse 
(1979) have shown that their effect can be somewhat significant. 
Also, it is known that there are elliptic effects that can somewhat 
affect the results. However, we are primarily interested in com- 
parisons between models, so the simpler parabolic formulation 
and stream-wise marching numerical solution have been used. 
Besides, as is well known, a k - • model, ARSM or RSM that 
predicts 2-D flows well, will not accurately predict axisymmetric 
flows unless some modification is made to the model, in particu- 
lar, to the dissipation equation. 

The equations of motion and the model equations for k and •, 
for axisymmetric flows, come from Rodi and Leschziner (1984). 
The fluid density p being constant has been absorbed into the 
variable for the pressure P. These equations are given below. 
Conservation of mass: 
OU 1 0( rV)  
- -  + 0 ( 9 )  
Ox r Or 

Conservation of axial momentum: 

a(UV)  1 a ( rUV)  OP 10(ru-~) 
- - +  

Ox r Or Ox r Or 

Conservc tion of radial momentum: 

OP W 2 
Or r 

Conservation of angular momentum: 

OWW ) 1 O( rVW ) W 10(rT~) 
+ - - + V - -  

Ox r Or r r Or 

Turbulence kinetic energy: 

O(kU) 1 O(rkV) 1 O 
- - +  

Ox r Or r Or 

Turbulence dissipation." 

O(•U) 1 O(reV) 1 O 
- - +  

Ox r Or r Or 

(lO) 

(11) 

UW 
(12) 

r 

kT-~ak ] 
rC,-~v ~Tr + P - •  (13) 

k ~ a • l  • 
rC, ; v -~¢ ] + ( C,,P - C~ • ) -~ 

(14) 

For the axisymmetricjet without swirl, Equations 11 and 12 
are not required, and aP/ax is neglected in Equation 10. The 
equations for k and • include the diffusion closures used in full 
Reynolds stress modeling. These formulations are used in the 
calculations with the ARSM, as well as with the RSM, because 
the derivation of the ARSM is in the context of Reynolds stress 
modeling. For calculations with the k - • model the coefficient 
C~(k2/~) replaces_Cs(k/•)v 2 in Equations 13 and C~(k2/•) /% 
replaces C,(k/•)c 2 in Equation 14, where C~ = 0.09 and cr~ = 
1.3. Standard values are used for the parameters C, = 0.22 and 
C, = 0.18, as given by Launder et al. (1975). 

The turbulence stresses were calculated from application of 
the NLSM of Equation 6, the full RSM, and the k - • model. 
Results obtained with the NLSM and g defined by Equation 2 or 
3 are referred to as standard or improved ARSM results, respec- 
tively. The RSM equations, as given by Launder and Morse 
(1979), written for the axisymmetric swirling jet are given in 
Appendix A. These contain the same pressure-strain correlation 
as in Equation 4. The strain and vorticity tensor components are 
listed in Appendix B. For the axisymmetric jet without swirl, the 
RSM equations and the strain and vorticity tensor components 
are given by setting W = 0 in the definitions in Appendices A 
and B. Calculations were also made with an NLSM with f~ 
defined by Equation 5 and g from Equation 3. This is the same 
as the improved ARSM but with corrections to account for a 
curvilinear coordinate system. The components of the vorticity 
tensor 1~ defined in Equation 5 are listed in Appendix C for the 
axisymmetric swirling jet. It should be noted that there are no 
extra terms in the definition of II for the axisymmetric jet 
without swirl. 

Results and discussion 

Previous works by Gibson and Younis (1986), Fu et al. (1988), 
Hogg and Leschziner (1989), and Jones and Pascau (1989) have 
established that the RSM is better than the k - •  model at 
reproducing the major features of swirling flows. Gibson and 
Younis found the RSM to be adequate at reproducing experimen- 
tal results for weak swirling flows. Hogg and Leschziner and 
Jones and Pascau applied the RSM and k - •  model to strong 
swirling confined flows and concluded that the RSM has the 
proper mechanism to account for swirl dependent effects. AI- 
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though predictions of the swirling jet are plotted along with 
experimental data in this paper, comparison to experimental data 
is not the main interest here. Because the goal of this work is to 
obtain results with the same quality as those from the RSM, 
emphasis is placed on comparisons with RSM results. 

There has been much discussion in the literature concerning 
comparison of turbulence model predictions to experimental data 
(see Taulbee 1989). Usually, differences between measured data 
and predictions are blamed on the inadequacy of the turbulence 
model. However, for some flows the quality of the available 
experimental data is questionable. Recently, Hussein et al. (1994) 
have shown that, for the axisymmetric jet, the turbulence inten- 
sity levels and experimental environment can significantly affect 
the measured data. They concluded that turbulence levels that are 
greater than 10% of the mean flow will cause significant errors in 
the experimental data when using a standard stationary hot-wire 
instrument. The degree of the error increases with increasing 
intensity levels caused by the nonlinearity of the measuring 
system. For free shear flows such as those considered here, the 
local turbulence intensity is lowest at the centerline and increases 
radially. For the swirling jet, data is taken from Ribeiro and 
Whitelaw (1980)• Far from the jet exit, at six diameters down- 
stream where the flow is beginning to become fully developed, 
the local turbulence level near the centerline is about 20% and 
increases to well over 60% near the free stream. This suggests 
that the data from this experiment is questionable, because a 
stationary hot-wire was used, and no corrections were made. 
Consequently, we will not make quantitative comparisons be- 
tween measurements and predictions. 

Results for the kinetic energy and shear stress for the fully 
developed axisymmetric jet are shown in Figure 1. It is seen that 
the standard ARSM considerably over predicts the kinetic energy 
and shear stress compared to solutions with the RSM. These 
results are similar to those of Fu et al. (1988) who illustrated the 
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inadequacy of the standard ARSM for axisymmetric flows. Pre- 
dictions with the improved ARSM are much closer to those 
obtained with the RSM. The reason for the improvement can be 
seen by examining the values of C~ as shown in Figure 2. In the 
case of a simple flow such as the axisymmetric jet without swirl, 
a total eddy viscosity coefficient can be defined so that ~ = 

t -C'~(k2/E)SU/Or. For this flow, C~ obtained from Equation 6 
is as follows: 

C~. = - ~ O(1)g + a '2) Ox ~r ) g x + G (3) ~ + g2"r 

[( av'q +o"' 

- -  G (9) 2 - -  a V )  - 4 q ' 3 ( O 2  ] + G ( 7 ) (  ogSx 0 V I  g 4 ' l " 3 t ° 2 g  ] ( 0 0 U  + - ~ r  g ] 

(15) 

where to 2= [(SU/Sr)/2] 2. The parameter C~ was calculated 
with Equation 15 for the ARSM solutions and from C~ = 
- -~/[ (k2/E)SU/Sr]  for the RSM solution. For the standard 

t ARSM, it is seen that the C~ profile in Figure 2 is much too 
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# large near the centerline. The difference in the C~ profiles is 
attributable to the difference in the factor g appearing in the 
standard and improved ARSMs, as given by Equations 2 and 3. 

0.10 

2 2 
u / U  c 

0.08 

0.06 

0.04 

0.02 

i 

0"0%.0 1.0 

- -  R S M  

- - - i m p  A R S M  

- i m p  A R S M  w / c o n y  t e r m s  

/ ~ - -  ~ ~ .  - -  - -  s t nd  A R S M  
/ 

\ • e x p  d a t a  

N 
\ 

u.-- e>  . ~ .  . . . . .  ; "~ .  \ \ 

" C .  "C. ..... \ 

, . ~ >  \ 
. >  \ 

,. , 

2 0 3.0 4.0 

Figure 5 

i 

2 2 
w / U  c 

Figure 6 

0.10 

0.08 

0.05 

0.04 

0.02 

i 

0"%.0  1.0 

- -  R S M  

- - - i m p  ARSM 

- i m p  A R S M  wl cony t e r m s  

- -  - -  stnd A R S M  

.... . . .  k - £  

• e x p  d a t a  

I I /  k ~  

i i 

2.0 3.0 4.0 

~WUc: 

Figure 7 

0.030 

0.020 

0.010 

0.000 
0.0 

- -  R S M  

- - - i m p  A R S M  

- i m p  A R S M  w / c o n y  t e r m s  

/ \ - -  s t nd  A R S M  

/ \ . . . . . . .  k-~ 

/ \ \ • c x p  d a t a  

/ \ 

/ ~ " L . .  \ 

i . /  X 
) \ < .  X 

I ..;;" X / . ) ~  .*, \ 
I/'1- \ \ 

~// " . . .~ , .~ .  ... 

/Y" \',. I 

, J l i , 

1.0 2.0 3.0 4.0 
~/P'o 

Approximately C~ ~ 4g /15 ,  which gives C~ ~ 0.33 for the stan- 
dard ARSM and C~ ~ 0.155 for the improved ARSM near the 
centerline. The improved ARSM gives a better representation of 
the stresses for small values of a time-scales parameter 'rcr where 
"r = k / e  and cr = (SklSlk) 1/2. Near the centerline of the jet, cr is 
small, thus, the improved ARSM gives better results there. 

Calculations were also carried out for the axisymmetric 
swirling jet with initial conditions taken from the experimental 
data of Ribeiro and Whitelaw (1980) for weak swirl. Predicted 
results along with experimental data at six diameters ( x / D  = 6.0) 
from the jet exit are shown in Figures 3-8.  As seen previously 
for the nonswirling jet and from Fu et al. (1988) for the swirling 
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jet, predictions with the standard ARSM are deficient compared 
to results from the RSM. Results with the improved ARSM are 
much closer to those with the RSM. The improved ARSM with 
the extra convection terms from Equation 5 is somewhat better at 
capturing the behavior of the stresses, particularly the uw shear 
stress. The k - e  model is adequate in predicting the kinetic 
energy, but not the individual normal stresses; and the shear 
stresses, but not the uw component. There is in general adequate 
agreement with the experimental data from all models except the 
standard ARSM. 

The near field ( x / D  < 6.0) of the swirling jet is mainly 
influenced by the relatively large strain field. For large axial 
distances, diffusional transport becomes more important. Figures 
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9 and 10 give profiles for the mean velocity, the kinetic energy, 
and the uv shear stress component at x / D  = 30.0. It is seen that 
the k - e and all the ARSM model predictions differ significantly 
from the RSM predictions, illustrating the importance of the 
accumulated convection and diffusion effects on the individual 
Reynolds stress components. It is also seen in Figures 9 and 10 
that the predictions with the standard ARSM are in much less 
agreement with the RSM predictions than the other models. This 
difference is mainly a result of the poor performance of the 
standard ARSM in the upstream region of the flow. 

Summary and conclusions 

The numerical solution of the modeled equations for the swirling 
jet demonstrates that the explicit form of the ARSM/NLSM 
alleviates the numerical difficulties usually associated with the 
implicit ARSM equation set. In the near-jet flow field predictions 
with the standard ARSM are considerably different than the RSM 
predictions. The improved ARSM, which better accounts for the 
range of time-scale parameter (turbulent time scale/mean flow 
time scale) values, gives predictions which are in reasonable 
agreement with those from the RSM for the near-jet field. In 
general, the improved ARSM gives much better predictions for 
the Reynolds stresses, particularly the normal components, than 
the k - e model. Inclusion of the convection terms, which arise 
in the coordinate transformation, in the ARSM has a significant 
effect on the results for some of the shear stress components. 
Over relatively long flow distances, such as in the far-jet field, 
the convection/diffusion effects on the individual stress compo- 
nents become significant, and the key assumption in the ARSM 
formulation breaks down. 

From the results obtained for the swirling jet we infer that for 
flows influenced by relatively large strains, the explicit NLSM 
obtained from the improved ARSM provides a relatively simple 
means of obtaining results with nearly the same quality as 
predicted with the RSM. The formulations involved in the NLSM 
lend themselves to easy implementation into existing k - e com- 
puter codes. Computation times for the NLSM were only slightly 
greater; whereas, the RSM required several times more time as 
compared to the k - e model. 
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Appendix A 

The RSM equations for the axisymmetric swirling jet come from 
Launder and Morse (1979): 
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